Abstract
The Na(+)/H(+) exchanger NHE1 is involved in intracellular pH homeostasis and cell volume regulation and accumulates with actin in the lamellipodia of fibroblasts. In order to determine the role of NHE1 following epithelial transformation and the acquisition of motile and invasive properties, we studied NHE1 expression in polarized MDCK cells, Moloney Sarcoma virus (MSV) transformed MDCK cells and an invasive MSV-MDCK cell variant (MSV-MDCK-INV). Expression of NHE1 was significantly increased in MSV-MDCK-INV cells relative to MSV-MDCK and MDCK cells. NHE1 was localized with b-actin to the tips of MSV-MDCK-INV cell pseudopodia by immunofluorescence. Sensitivity of NHE1-mediated (22)Na uptake to ethylisopropylamiloride, a specific inhibitor of NHE1, was increased in MSV-MDCK cells relative to MDCK cells. Changes in intracellular pH induced upon EIPA treatment were also of higher magnitude in MSV-MDCK and MSV-MDCK-INV cells compared to wild-type MDCK cells, especially in Hepes-buffered DMEM medium. Inhibition of NHE1 by 50 microM ethylisopropylamiloride induced the disassembly of actin stress fibers and redistribution of the actin cytoskeleton in all cell types. However, in MSV-MDCK-INV cells, the effect of ethylisopropylamiloride treatment was more pronounced and associated with the increased reversible detachment of the cells from the substrate. Videomicroscopy of MSV-MDCK-INV cells revealed that within 20 minutes of addition, ethylisopropylamiloride induced pseudopodial retraction and inhibited cell motility. The ability of ethylisopropylamiloride to prevent nocodazole-induced formation of actin stress fibers in MSV-MDCK cells was more pronounced in Hepes medium relative to NaHCO(3) medium, showing that NHE1 can regulate actin stress fiber assembly in transformed MSV-MDCK cells via its intracellular pH regulatory effect. These results implicate NHE1 in the regulation of the actin cytoskeleton dynamics necessary for the adhesion and pseudopodial protrusion of motile, invasive tumor cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.