Abstract

The tumor suppressor gene BRCA1 functions in part as a caretaker in preserving the integrity of the genome, but also exhibits tissue-specific function by inhibiting estrogen receptor activity. Because estrogen (E2) induces a wide range of gene expression changes (by nongenomic and several transcriptional pathways), we sought to determine how comprehensive is the BRCA1-mediated inhibition of E2-induced gene expression alterations. Using cDNA-spotted microarrays, we identified a relatively large number of gene expression alterations (both increased and decreased expression) in MCF-7 cells caused by E2, some of which have been reported in previous studies. However, in the presence of exogenous wild-type BRCA1 (wtBRCA1), the response to E2 was severely blunted, with only about 10% the number of gene expression changes as that found in the absence of wtBRCA1. Examples of these findings were confirmed by semiquantitative and quantitative RT-PCR assays. In contrast to wtBRCA1, the induction by E2 of several E2-responsive genes was not inhibited by a full-length tumor-associated mutant BRCA1 protein [T300G (or (61)Cys-->Gly)]. For three E2-responsive genes whose induction by E2 was inhibited by wtBRCA1, wtBRCA1 had little or no effect on the mRNA half-life in the presence of E2. Consistent with these findings, wtBRCA1 inhibited E2-stimulated proliferation of MCF-7 cells, but wtBRCA1 failed to inhibit the proliferation of MCF-7 cells stimulated by IGF-I. Our findings suggest that BRCA1 globally inhibits the response to estrogen in a dose- and time-dependent fashion. The implications of these findings for understanding how BRCA1 may act to restrain E2 action in vivo are considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.