Abstract

The cardiac and skeletal muscle sarcoplasmic reticulum ryanodine receptor Ca(2+) release channels contain thiols that are potential targets of endogenously produced reactive oxygen and nitrogen intermediates. Previously, we showed that the skeletal muscle ryanodine receptor (RyR1) has O(2)-sensitive thiols; only when these thiols are in the reduced state (pO(2) approximately 10 mmHg) can physiological concentrations of NO (nanomolar) activate RyR1. Here, we report that cardiac muscle ryanodine receptor (RyR2) activity also depends on pO(2), but unlike RyR1, RyR2 was not activated or S-nitrosylated directly by NO. Rather, activation and S-nitrosylation of RyR2 required S-nitrosoglutathione. The effects of peroxynitrite were indiscriminate on RyR1 and RyR2. Our results indicate that both RyR1 and RyR2 are pO(2)-responsive yet point to different mechanisms by which NO and S-nitrosoglutathione influence cardiac and skeletal muscle sarcoplasmic reticulum Ca(2+) release.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.