Abstract
In previous studies we have characterized the cp32/18 loci in Borrelia burgdorferi 297 which encode OspE and OspF orthologs and a third group of lipoproteins which possess OspE/F-like leader peptides (Elps). To further these studies, we have comprehensively analyzed their patterns of expression throughout the borrelial enzootic cycle. Serial dilution reverse transcription-PCR analysis indicated that although a shift in temperature from 23 to 37 degrees C induced transcription for all nine genes analyzed, this effect was often markedly enhanced in mammalian host-adapted organisms cultivated within dialysis membrane chambers (DMCs) implanted within the peritoneal cavities of rats. Indirect immunofluorescence assays performed on temperature-shifted, in vitro-cultivated spirochetes and organisms in the midguts of unfed and fed ticks revealed distinct expression profiles for many of the OspE-related, OspF-related, and Elp proteins. Other than BbK2.10 and ElpA1, all were expressed by temperature-shifted organisms, while only OspE, ElpB1, OspF, and BbK2.11 were expressed in the midguts of fed ticks. Additionally, although mRNA was detected for all nine lipoprotein-encoding genes, two of these proteins (BbK2.10 and ElpA1) were not expressed by spirochetes cultivated in vitro, within DMCs, or by spirochetes within tick midguts. However, the observation that B. burgdorferi-infected mice generated specific antibodies against BbK2.10 and ElpA1 indicated that these antigens are expressed only in the mammalian host and that a form of posttranscriptional regulation is involved. Analysis of the upstream regions of these genes revealed several differences between their promoter regions, the majority of which were found in the -10 and -35 hexamers and the spacer regions between them. Also, rather than undergoing simultaneous upregulation during tick feeding, these genes and the corresponding lipoproteins appear to be subject to progressive recruitment or enhancement of expression as B. burgdorferi is transmitted from its tick vector to the mammalian host. These findings underscore the potential relevance of these molecules to the pathogenic events of early Lyme disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.