Abstract

Biocompatible polymers with nontraditional intrinsic luminescence (NTIL) possess the advantages of environmental friendliness and facile structural regulation. To regulate the emission wavelength of polymers with NTIL, the alkane chain lengths of hyperbranched polysiloxane (HBPSi) are adjusted. Optical investigation shows that the emission wavelength of HBPSi is closely related to the alkane chain lengths; namely, short alkane chains will generate relatively long-wavelength emission. Electronic communication among functional groups is responsible for the emission. In a concentrated solution, HBPSi molecules aggregate together due to the strong hydrogen bond and amphiphilicity, and the functional groups in the aggregate are so close that their electron clouds are overlapped and generate spatial electronic delocalizations. HBPSi with shorter alkane chains will generate larger electronic delocalizations and emit longer-wavelength emissions. Moreover, these polymers show excellent applications in the fabrication of fluorescent films and chemical sensing. This work could provide a strategy for regulating the emission wavelengths of unconventional fluorescent polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.