Abstract

Although bisulfite at low concentrations (L-NaHSO₃) has been found to increase the cyclic electron transport around PSI (CET), its regulative mechanism remains unknown. In this work, the role of L-NaHSO₃ (0.1-500 μM) in NAD(P)H dehydrogenase-dependent CET (the NDH pathway) was investigated. After treatment of tobacco leaves with L-NaHSO₃, the NDH pathway, as reflected by a transient post-illumination increase in Chl fluorescence, the dark reduction of P700+ after far-red light and the amount of NDH, was increased after the light-dark-light transition, but was slightly lowered under continuous light. Meanwhile, the linear electron transport (LET) was accelerated by L-NaHSO₃ under both the light regimes. Experiments in thylakoids further demonstrated that both LET, monitored by light-dependent oxygen uptake, and CET, as determined from the NADPH-dependent oxygen uptake and dark reduction of P700+, were enhanced by L-NaHSO₃ and the enhancements were abolished by superoxide dismutase. Furthermore, L-NaHSO₃-induced CET was partially impaired in thylakoids of the ΔndhCKJ mutant, while L-NaHSO₃-induced LET was not affected. Based on these results, we propose that the photooxidation of L-NaHSO₃ initiated by superoxide anions in PSI regulates NDH pathway to maintain efficient photosynthesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.