Abstract
Various n-formylated peptides function as receptor-specific chemoattractants for both granulocytes and monocytes. Because these agents are important tools in the study of leukocyte function in vitro, we chose to examine their effects on leukocyte procoagulant activity. The synthetic chemotactic peptide N-formyl-methionyl-leucyl phenylalanine (FMLP) induces a fourfold increase in procoagulant activity (PCA) in cultured human monocytes at an optimal dose of 5 X 10(-9) mol/L, whereas higher doses inhibit PCA response. Although nonadherent lymphocytes are not absolutely required for PCA expression, their presence significantly amplifies monocyte PCA. Irradiation of nonadherent lymphocytes before mixing them with FMLP and adherent cells abolishes their ability to amplify PCA. Kinetic studies demonstrate an increase in optimal dose FMLP-stimulated PCA over time whereas high- dose inhibition of PCA generation occurs at various incubation times. Cell viability is unaffected by inhibitory concentrations of FMLP. Supernates from high-dose FMLP-stimulated cells fail to inhibit later expression of PCA by cells exposed to endotoxin. The cellular procoagulant remains cell-bound and exhibits characteristics of thromboplastin (tissue factor), including inhibition by concanavalin A and phospholipase C as well as the ability to shorten the clotting times of factor VIII but not factor VII-deficient substrate plasmas. These results suggest a complex system of lymphoid cell regulation of procoagulant generation by monocytes exposed to various chemotactic peptides in vitro.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.