Abstract

We recently reported that a hypoxia-responsive element mediates a novel pathway of transcriptional activation of the inducible nitric oxide synthase (iNOS) promoter in murine macrophages treated with IFN-gamma plus hypoxia (1% O2). In this study, we investigated the expression of NOS activity and the regulation of NOS induction in IFN-gamma treated ANA-1 murine macrophages or thioglycollate-elicited peritoneal macrophages cultured under hypoxic conditions. We found that murine macrophages stimulated with IFN-gamma plus hypoxia, despite a significant accumulation of iNOS mRNA, did not release nitrite into culture supernatant. However, cytosol from macrophages treated with IFN-gamma plus hypoxia contained significant levels of iNOS protein and enzymatic activity. Experiments in which cells were treated with IFN-gamma plus hypoxia and then cultured in normoxic conditions (20% O2) demonstrated that reoxygenation was required to achieve detectable accumulation of nitrite in the culture supernatant. Furthermore, we demonstrated that IL-4 inhibited IFN-gamma plus hypoxia-dependent induction of iNOS mRNA expression, iNOS protein, and enzymatic activity. Experiments in which ANA-1 macrophages were transfected transiently with the full-length iNOS promoter linked to a chloramphenicol acetyltransferase reporter gene demonstrated that IL-4 also down-regulated the IFN-gamma plus hypoxia-induced activation of the iNOS promoter. These data establish that hypoxia is a costimulus with IFN-gamma for the induction of iNOS activity in ANA-1 macrophages as well as in murine peritoneal macrophages, and they provide the first evidence that IL-4 inhibits hypoxia-inducible gene expression. In addition, our results suggest that hypoxia, which occurs in many pathologic conditions, may play an important role in the activation of murine macrophages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.