Abstract

Hedgehog (Hh) morphogen signalling plays an essential role in tissue development and homeostasis. While much is known about the Hh signal transduction pathway, far less is known about the molecules that regulate the expression of the hedgehog (hh) ligand itself. Here we reveal that Shaggy (Sgg), the Drosophila melanogaster orthologue of GSK3β, and the N-end Rule Ubiquitin-protein ligase Hyperplastic Discs (Hyd) act together to co-ordinate Hedgehog signalling through regulating hh ligand expression and Cubitus interruptus (Ci) expression. Increased hh and Ci expression within hyd mutant clones was effectively suppressed by sgg RNAi, placing sgg downstream of hyd. Functionally, sgg RNAi also rescued the adult hyd mutant head phenotype. Consistent with the genetic interactions, we found Hyd to physically interact with Sgg and Ci. Taken together we propose that Hyd and Sgg function to co-ordinate hh ligand and Ci expression, which in turn influences important developmental signalling pathways during imaginal disc development. These findings are important as tight temporal/spatial regulation of hh ligand expression underlies its important roles in animal development and tissue homeostasis. When deregulated, hh ligand family misexpression underlies numerous human diseases (e.g., colorectal, lung, pancreatic and haematological cancers) and developmental defects (e.g., cyclopia and polydactyly). In summary, our Drosophila-based findings highlight an apical role for Hyd and Sgg in initiating Hedgehog signalling, which could also be evolutionarily conserved in mammals.

Highlights

  • Hh morphogens act in multicellular animals to control development and homeostasis of adult tissues and organs [1, 2]

  • Suggesting that Hyperplastic Discs (Hyd) can normally suppresses Ci155 expression independent of any effect mediated by hh ligand overexpression. These results indicated that Hyd may have independent roles in controlling the (i) initiation of Hh signalling by regulating hh ligand expression and (ii) modulating the pathway response by governing Ci155 expression

  • Our work reveals a previously unreported role for Sgg in regulating hh ligand expression, while identification of a physical interaction between Hyd, Sgg and Ci155 provides a potential mechanism by which Hyd could influence both hh ligand and Ci155 expression patterns

Read more

Summary

Introduction

Hh morphogens act in multicellular animals to control development and homeostasis of adult tissues and organs [1, 2]. The unbound Hh-receptor Patched (Ptc) constitutively represses Hh signalling by indirectly suppressing the pathway’s

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.