Abstract

Repeated bouts of physical exercise, i.e., training, induce mitochondrial biogenesis and result in improved physical performance and attenuation of glycogen breakdown during submaximal exercise. It has been suggested that as a consequence of the increased mitochondrial volume, a smaller degree of metabolic stress (e.g., smaller increases in ADP and Pi) is required to maintain mitochondrial respiration in the trained state during exercise at the same absolute intensity. The lower degree of Pi accumulation is believed to account for the diminished glycogen breakdown, since Pi is a substrate for glycogen phosphorylase, the rate-limiting enzyme for glycogenolysis. However, in this review, we present an alternative explanation for the diminished glycogen breakdown. Thus, the lower degree of metabolic stress after training is also associated with smaller increases in AMP (free concentration during contraction at specific intracellular sites) and this results in less activation of phosphorylase b (the non-phosphorylated form of phosphorylase), resulting in diminished glycogen breakdown. Concomitantly, the smaller accumulation of Pi, which interferes with cross-bridge function and intracellular Ca(2+) handling, contributes to the increased fatigue resistance. The delay in glycogen depletion also contributes to enhanced performance during prolonged exercise by functioning as an energy reserve.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.