Abstract
Calcium ions (Ca2+) act as an intracellular second messenger and can enter neurons through various ion channels. Influx of Ca2+ through distinct types of Ca2+ channels may differentially activate biochemical processes. N-Methyl-D-aspartate (NMDA) receptors and L-type Ca2+ channels, two major sites of Ca2+ entry into hippocampal neurons, were found to transmit signals to the nucleus and regulated gene transcription through two distinct Ca2+ signaling pathways. Activation of the multifunctional Ca(2+)-calmodulin-dependent protein kinase (CaM kinase) was evoked by stimulation of either NMDA receptors or L-type Ca2+ channels; however, activation of CaM kinase appeared to be critical only for propagating the L-type Ca2+ channel signal to the nucleus. Also, the NMDA receptor and L-type Ca2+ channel pathways activated transcription by means of different cis-acting regulatory elements in the c-fos promoter. These results indicate that Ca2+, depending on its mode of entry into neurons, can activate two distinct signaling pathways. Differential signal processing may provide a mechanism by which Ca2+ controls diverse cellular functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.