Abstract

Excited-state intramolecular proton transfer (ESIPT) is favored by researchers because of its unique optical properties. However, there are relatively few systematic studies on the effects of changing the electronegativity of atoms on the ESIPT process and photophysical properties. Therefore, we selected a series of benzoxazole isothiocyanate fluorescent dyes (2-HOB, 2-HSB, and 2-HSeB) by theoretical methods, and systematically studied the ESIPT process and photophysical properties by changing the electronegativity of chalcogen atoms. The calculated bond angle, bond length, energy gap, and infrared spectrum analysis show that the order of the strength of intramolecular hydrogen bonding of the three molecules is 2-HOB<2-HSB<2-HSeB. Correspondingly, the magnitude of the energy barrier of the potential energy curve is 2-HOB>2-HSB>2-HSeB. In addition, the calculated electronic spectrum shows that as the atomic electronegativity decreases, the emission spectrum has a redshift. Therefore, this work will offer certain theoretical guidance for the synthesis and application of new dyes based on ESIPT properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.