Abstract

Ovarian produced ecdysteroids regulate sex pheromone production in the female housefly, inducing the synthesis of (Z)-9-tricosene (Z9-23 : Hy), cis-9,10-epoxytricosane, (Z)-14-tricosen-10-one and methylalkanes. Experiments were performed to gain a detailed understanding of the processes affected by 20-hydroxyecdysone (20-HE) that result in sex pheromone production as the female becomes reproductively mature. A novel microsomal fatty acid synthetase (FAS) is present in the epidermal tissue and plays a role in producing the methyl-branched fatty acid precursors to the methylalkanes. This FAS is released from the microsomes in the presence of 3 M KC1. A major enzyme activity influenced by 20-HE is the fatty acyl-CoA elongation system. A shift in the chain length specificity of the products of the elongation system causes the change in the chain lengths of the alkenes produced to switch from C 27, and longer in the previtellogenic female to C 23, in the mature female. Data is presented indicating that it is the condensation activity of the elongation system that is affected. Z9-23:Hy arises from a 24 carbon acyl group which is reduced to an aldehyde, and then converted to the hydrocarbon. Data is presented demonstrating that it is the fatty acyl-CoA derivative and not the free fatty acid that is the substrate. There does not appear to be a chain length specificity which regulates the conversion of fatty acyl-CoAs to hydrocarbons as both 24 and 28 carbon fatty acyl-CoAs are converted to hydrocarbon by both males and females of all ages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.