Abstract

Tumor suppressor gene silencing by DNA hypermethylation contributes to tumorigenesis in many tumor types. This aberrant methylation may be due to increased expression and activity of DNA methyltransferases, which catalyze the transfer of methyl groups from S-adenosylmethionine to cytosines in CpG dinucleotides. Elevated expression of the maintenance DNA methyltransferase, DNA methyltransferase 1 (DNMT-1), has been shown in carcinomas of the colon, lung, liver, and prostate. Based on the nearly ubiquitous alterations of both DNA methylation and the retinoblastoma protein (pRb) pathway found in human cancer, we investigated a potential regulatory pathway linking the two alterations in murine and human prostate epithelial cells. Analysis of DNA methyltransferase levels in Rb-/- murine prostate epithelial cell lines revealed elevated Dnmt-1 levels. Genomic DNA sequence analysis identified conserved E2F consensus binding sites in proximity to the transcription initiation points of murine and human Dnmt-1. Furthermore, the Dnmt-1 promoter was shown to be regulated by the pRb/E2F pathway in murine and human cell lines of epithelial and fibroblast origin. In the absence of pRb, Dnmt-1 transcripts exhibited aberrant cell cycle regulation and Rb-/- cells showed aberrant methylation of the paternally expressed gene 3 (Peg3) tumor suppressor gene. These findings show a link between inactivation of the pRb pathway and induction of DNA hypermethylation of CpG island-containing genes in tumorigenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.