Abstract
Clones of the perennial grass Panicum virgatum were studied on the Konza Prairie in northeast Kansas to determine the effects of neighbors, nutrient availability, and physiological integration on ramet population dynamics and clonal growth and architecture. Opposite halves of established clones in the field were subjected differentially to treatments including neighbor removal and nitrogen addition, with intact or severed rhizome connections between halves. Neighborhood competition strongly influenced clone architecture and expansion rates. Removal of neighbors resulted in a >;95% increase in radial clone expansion, intraclonal ramet densities, ramet population growth rates, ramet biomass, and percent of stems flowering, averaged over a 4‐year period relative to halves or clones with intact competitors. Plant responses suggest that effects of interclonal neighbors are mediated through alteration of the light environment in the clone canopy and water availability. Addition of nitrogen did not affect lateral spread or clone structure, but resulted in significant increases in ramet size, flowering, and seed production. ANOVA revealed no significant effect of rhizome severing or treatment × severing interactions, suggesting that the size of the integrated physiological unit is much smaller than clone size and/or that physiological integration had no effect on clone responses to environmental heterogeneity at the scale of the diameter of established clones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.