Abstract

AbstactBackgroundThe inorganic phosphate (Pi) transporter, PiT1 (SLC20A1), is ubiquitously expressed in mammalian cells. It has previously been shown that down-regulation of PiT1 severely impaired the proliferation of two transformed human cells lines, HepG2 and HeLa, and the tumorigenicity of HeLa cells in nude mice. Moreover, PiT1 knock-out mice do not survive past E12.5 and from E10.5, the embryos were found to be growth-retarded and showed reduced proliferation of liver cells. Isolated mouse embryonic fibroblasts with knocked out as well as reduced PiT1 expression levels also exhibited impaired proliferation. Together these results suggest that a certain level of PiT1 is important for proliferation. We have here investigated the role of PiT1 in regulation of cell proliferation using two strictly density-inhibited cells lines, the murine MC3T3-E1 and NIH3T3 cells.ResultsWe found that knock-down of PiT1 in MC3T3-E1 cells led to impaired proliferation supporting that at least a certain level of PiT1 is important for wildtype level of proliferation. We, however, also observed that MC3T3-E1 and NIH3T3 cells themselves regulate their endogenous PiT1 mRNA levels with lower levels in general correlating with decreased proliferation/increased cell density. Moreover, over-expression of human PiT1 led to increased proliferation of both MC3T3-E1 and NIH3T3 cultures and resulted in higher cell densities in cultures of these two strictly density-inhibited cell lines. In addition, when we transformed NIH3T3 cells by cultivation in fetal bovine serum, cells over-expressing human PiT1 formed more colonies in soft agar than control cells.ConclusionsWe conclude that not only is a certain level of PiT1 necessary for normal cell division as suggested by previously published studies, rather the cellular PiT1 level is involved in regulating cell proliferation and cell density and an increased PiT1 expression can indeed make NIH3T3 cells more sensitive to transformation. We have thus provided the first evidence for that expression of the type III Pi transporter, PiT1, above the endogenous level can drive cell proliferation and overrule cell density constraints, and the results bridge previous observations showing that a certain PiT1 level is important for regulating normal embryonic growth/development and for tumorigenicity of HeLa cells.

Highlights

  • The inorganic phosphate (Pi) transporter, PiT1 (SLC20A1), is ubiquitously expressed in mammalian cells

  • We found that knock-down of PiT1 in MC3T3-E1 cells led to impaired proliferation supporting that at least a certain level of PiT1 is important for wildtype level of proliferation

  • We conclude that is a certain level of PiT1 necessary for normal cell division as suggested by previously published studies, rather the cellular PiT1 level is involved in regulating cell proliferation and cell density and an increased PiT1 expression can make NIH3T3 cells more sensitive to transformation

Read more

Summary

Introduction

The inorganic phosphate (Pi) transporter, PiT1 (SLC20A1), is ubiquitously expressed in mammalian cells. Both paralogs are ubiquitously expressed in mammalian cells and have been suggested to be housekeeping Pi transporters supplying cells with their general Pi needs [1,16,17,18] and to have overlapping functions in cellular Pi import This notion is supported by results obtained by Beck and co-workers on an allelic series of mutant mice in which PiT1 was expressed from 0 to 100% [19]. MEF cells derived from PiT1-knock-out embryos and from embryos showing PiT1 mRNA levels at 50% of wildtype levels had unimpaired Pi uptake abilities, they did show severely impaired proliferation [19] These observations suggest a function of PiT1 in proliferation, which is not related to cellular Pi uptake. Studying MEF cells with either knocked out PiT1 expression or PiT1 mRNA levels at 50% of wildtype levels, Beck and coworkers found that the proliferative potentials of these cells correlated with the levels of PiT1 expression [19]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.