Abstract

To examine the relative importance of calcium and gastrin in regulation of calcitonin secretion, we administered graded oral doses of calcium to 10 normal men, ages 23-29 yr. Each subject had previously shown an appropriate increase in calcitonin secretion in response to a pharmacologic (0.5 mug/kg) pentagastrin injection. On separate days and in random order, each man drank 250 ml of distilled water containing 0.0, 0.5, 1.5, and 3.0 g of elemental calcium as the gluconate salt. Blood samples were drawn before and at 30, 60, 90, 120, 180, and 240 min after the oral calcium dose. The samples were analyzed for calcium by atomic absorption spectroscopy, and for gastrin and calcitonin by radioimmunoassays of established sensitivity and specificity. Ingestion of water (control) caused no change in any of the three variables. Calcium ingestion resulted in dose-related increases, within the normal range, of all three variables. Immunoreactive gastrin rose promptly, peaking at 30 min, and returning to basal levels or below by 120 min. In contrast, calcium and immunoreactive calcitonin levels rose slowly and in parallel, peaking at 120-240 min. Changes in calcitonin and changes in calcium were strongly and positively correlated, r = 0.73, when all data were pooled. Furthermore, individual linear regressions for changes in calcitonin and calcium levels (calculated separately for the three oral calcium doses in each subject) had positive slopes in 28 out of 30 sets (P < 0.01). The changes in calcitonin concentrations were much more poorly correlated with the corresponding changes in serum gastrin levels; in fact, the regression coefficient was weakly negative, r = -0.20. These results show that, at least in young adult men, changes of ambient calcium concentration within the normal range may be of major importance in physiologic regulation of calcitonin secretion. The findings are consistent with the hypothesis that calcitonin functions to prevent excessive postprandial hypercalcemia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.