Abstract

25-Hydroxycholesterol inhibits cholesterol biosynthesis by inhibiting the activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Addition of 25-hydroxycholesterol to chicken myeloblasts caused a rapid inhibition of HMG-CoA reductase activity, producing approximately an 80% decrease in enzyme activity after 60 min. The mode of action of 25-hydroxycholesterol was determined by immunoprecipitating radiolabeled enzyme from 25-hydroxycholesterol-treated myeloblasts. The decline in enzyme activity due to addition of 25-hydroxycholesterol was not associated with increased levels of [32P]PO4 incorporation into the immunoprecipitated reductase polypeptide (Mr = 94,000). Hence, 25-hydroxycholesterol did not appear to regulate reductase activity by enzyme phosphorylation, as observed for other modulators of HMG-CoA reductase. However, 25-hydroxycholesterol was shown to inhibit reductase activity by causing a 350% increase in the relative rate of reductase degradation and a 72% decrease in the relative rate of reductase synthesis. These alterations in the rates of degradation and synthesis occurred rapidly (within 10-30 min after addition of 25-hydroxycholesterol) and can account completely for the 25-hydroxycholesterol-induced inhibition of enzyme activity. The rapid decline in the rate of synthesis of HMG-CoA reductase in 25-hydroxycholesterol-treated cells was not associated with concomitant changes in the levels of reductase mRNA; therefore, suggesting that 25-hydroxycholesterol must inhibit the rate of reductase synthesis by translational regulation. We also present evidence that mRNA purified from chicken myeloblasts codes for two reductase polypeptides of Mr = 94,000 and 102,000.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.