Abstract

In Escherichia coli, the transcription factor sigmaS, encoded by rpoS, controls the expression of a large number of genes involved in cellular responses to a diverse number of stresses, including starvation, osmotic stress, acid shock, cold shock, heat shock, oxidative DNA damage, and transition to stationary phase. A list of over 50 genes under the control of rpoS has been compiled. The transcription factor sigmaS acts predominantly as a positive effector, but it does have a negative effect on some genes. The synthesis and accumulation of sigmaS are controlled by mechanisms affecting transcription, translation, proteolysis, and the formation of the holoenzyme complex. Transcriptional control of rpoS involves guanosine 3',5'-bispyrophosphate (ppGpp) and polyphosphate as positive regulators and the cAMP receptor protein - cAMP complex (CRP-cAMP) as a negative regulator. Translation of rpoS mRNA is controlled by a cascade of interacting factors, including Hfq, H-NS, dsrA RNA, LeuO, and oxyS RNA that seem to modulate the stability of a region of secondary structure in the ribosome-binding region of the gene's mRNA. The transcription factor sigmaS is sensitive to proteolysis by ClpPX in a reaction that is promoted by RssB and inhibited by the chaperone DnaK. Despite the demonstrated involvement of so many factors, arguments have been presented suggesting that sensitivity to proteolysis may be the single most important modulator of sigmaS levels. The activity of sigmaS may also be modulated by trehalose and glutamate, which activate holoenzyme formation and promote holoenzyme binding to certain promoters. Key words: transcription, translation, regulation, sigma factor, starvation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.