Abstract

Chemical recycling to monomer (CRM) is a promising route for transitioning to a circular polymer economy. To develop new CRM systems with useful properties, it is important to understand the effects of monomer structure on polymerization/depolymerization behavior. In earlier work, this group demonstrated chemically recyclable polymers prepared by ring-opening metathesis polymerization of trans-cyclobutane fused cyclooctenes (tCBCO). Here, it is investigated how different substituents on cyclobutane impact the thermodynamics and thermal properties of tCBCO polymers. Introducing additional substituents to a cis-diester functionalized tCBCO is found to favor the conversion of polymerization; increased polymerization conversion is also observed when the cis-diester is isomerized into its trans counterpart. The effects of these structural features on the thermal properties are also studied. These findings can provide important insights into designing next-generation CRM polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.