Abstract

AbstractThe exploration of earth‐abundant and high‐efficiency bifunctional electrocatalysts for overall water splitting is of vital importance for the future of the hydrogen economy. Regulation of electronic structure through heteroatom doping represents one of the most powerful strategies to boost the electrocatalytic performance of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Herein, a rational design of O‐incorporated CoP (denoted as O‐CoP) nanosheets, which synergistically integrate the favorable thermodynamics through modification of electronic structures with accelerated kinetics through nanostructuring, is reported. Experimental results and density functional theory simulations manifest that the appropriate O incorporation into CoP can dramatically modulate the electronic structure of CoP and alter the adsorption free energies of reaction intermediates, thus promoting the HER and OER activities. Specifically, the optimized O‐CoP nanosheets exhibit efficient bifunctional performance in alkaline electrolyte, requiring overpotentials of 98 and 310 mV to deliver a current density of 10 mA cm−2 for HER and OER, respectively. When served as bifunctional electrocatalysts for overall water splitting, a low cell voltage of 1.60 V is needed for achieving a current density of 10 mA cm−2. This proposed anion‐doping strategy will bring new inspiration to boost the electrocatalytic performance of transition metal–based electrocatalysts for energy conversion applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.