Abstract

Cancer stem cells (CSCs) identified in lung cancer exhibit resistance to chemotherapy, radiotherapy, and targeted therapy. Therefore, a technology for controlling CSCs is needed to overcome such resistance to cancer therapy. Various evidences about the association between epithelial-mesenchymal transition related transcriptomic alteration and acquisition of CSC phenotype have been proposed recently. Down-regulated miR-26a-5p is closely related to mesenchymal-like lung cancer cell lines. These findings suggest that miR-26a-5p might be involved in lung cancer stemness. RNA polymerase III subunit G (POLR3G) was selected as a candidate target of miR-26a-5p related to cancer stemness. It was found that miR-26a-5p directly regulates the expression of POLR3G.Overexpression of miR-26a-5p induced a marked reduction of colony formation and sphere formation. Co-treatment of miR-26a-5p and paclitaxel decreased cell growth, suggesting that miR-26a-5p might play a role as a chemotherapy sensitizer. In the cancer genome atlas data, high miR-26a-5p and low POLR3G expression were also related to higher survival rate of patients with lung adenocarcinoma. These results suggest that miR-26a-5p can suppress lung cancer stemness and make cancer cell become sensitive to chemotherapy. This finding provides a novel insight into a potential lung cancer treatment by regulating stemness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.