Abstract

A 900 base pair segment of the c-myc promoter, containing eight nCTCTn sequences, is required for the induction of c-myc expression by electromagnetic (EM) fields. Similarly, a 70 bp region of the HSP70 promoter, containing three nCTCTn sequences, is required for the induction of HSP70 expression by EM fields. Removal of the 900 base pair segment of the c-myc promoter eliminates the ability of EM fields to induce c-myc expression. Similarly, removal of the 70 bp region of the HSP70 promoter, with its three nCTCTn sequences, eliminates the response to EM fields. The nCTCTn sequences apparently act as electromagnetic field response elements (EMRE). To test if introducing EMREs imparts the ability to respond to applied EM fields, the 900 bp segment of the c-myc promoter (containing eight EMREs) was placed upstream of CAT or luciferase reporter constructs that were otherwise unresponsive to EM fields. EMREs-reporter constructs were transfected into HeLa cells and exposed to 8 microT 60 Hz fields. Protein extracts from EM field-exposed transfectants had significant increases in activity of both CAT and luciferase, compared with identical transfectants that were sham-exposed. Transfectants with CAT or luciferase constructs lacking EMREs remained unresponsive to EM fields, i.e., there was no increase in either CAT or luciferase activity. These data support the idea that EMREs can be used as switches to regulate exogenously introduced genes in gene therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.