Abstract

The vanilloid receptor-1 (TRPV1) plays a key role in the perception of peripheral thermal and inflammatory pain. TRPV1 expression and channel activity are notably up-regulated by proalgesic agents. The transduction pathways involved in TRPV1 sensitization are still elusive. We have used a yeast two-hybrid screen to identify proteins that associate with the N terminus of TRPV1. We report that two vesicular proteins, Snapin and synaptotagmin IX (Syt IX), strongly interact in vitro and in vivo with the TRPV1 N-terminal domain. In primary dorsal root ganglion neurons, TRPV1 co-distributes in vesicles with Syt IX and the vesicular protein synaptobrevin. Neither Snapin nor Syt IX affected channel function, but they notably inhibited protein kinase C (PKC)-induced potentiation of TRPV1 channel activity with a potency that rivaled the blockade evoked by botulinum neurotoxin A, a potent blocker of neuronal exocytosis. Noteworthily, we found that PKC activation induced a rapid delivery of functional TRPV1 channels to the plasma membrane. Botulinum neurotoxin A blocked the TRPV1 membrane translocation induced by PKC that was activated with a phorbol ester or the metabotropic glutamate receptor mGluR5. Therefore, our results indicate that PKC signaling promotes at least in part the SNARE-dependent exocytosis of TRPV1 to the cell surface. Taken together, these findings imply that activity-dependent delivery of channels to the neuronal surface may contribute to the buildup and maintenance of thermal inflammatory hyperalgesia in peripheral nociceptor terminals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.