Abstract

This paper develops a large-scale inference approach for the regularization of stock return covariance matrices. The framework allows for the presence of heavy tails and multivariate GARCH-type effects of unknown form among the stock returns. The approach involves simultaneous testing of all pairwise correlations, followed by setting non-statistically significant elements to zero. This adaptive thresholding is achieved through sign-based Monte Carlo resampling within multiple testing procedures, controlling either the traditional familywise error rate, a generalized familywise error rate, or the false discovery proportion. Subsequent shrinkage ensures that the final covariance matrix estimate is positive definite and well-conditioned while preserving the achieved sparsity. Compared to alternative estimators, this new regularization method demonstrates strong performance in simulation experiments and real portfolio optimization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.