Abstract
BackgroundWe consider two key problems in genomics involving multiple traits: multi-trait genome wide association studies (GWAS), where the goal is to detect genetic variants associated with the traits; and multi-trait genomic selection (GS), where the emphasis is on accurately predicting trait values. Multi-trait linear mixed models build on the linear mixed model to jointly model multiple traits. Existing estimation methods, however, are limited to the joint analysis of a small number of genotypes; in fact, most approaches consider one SNP at a time. Estimating multi-dimensional genetic and environment effects also results in considerable computational burden. Efficient approaches that incorporate regularization into multi-trait linear models (no random effects) have been recently proposed to identify genomic loci associated with multiple traits (Yu et al. in Multitask learning using task clustering with applications to predictive modeling and GWAS of plant varieties. arXiv:1710.01788, 2017; Yu et al in Front Big Data 2:27, 2019), but these ignore population structure and familial relatedness (Yu et al in Nat Genet 38:203–208, 2006).ResultsThis work addresses this gap by proposing a novel class of regularized multi-trait linear mixed models along with scalable approaches for estimation in the presence of high-dimensional genotypes and a large number of traits. We evaluate the effectiveness of the proposed methods using datasets in maize and sorghum diversity panels, and demonstrate benefits in both achieving high prediction accuracy in GS and in identifying relevant marker-trait associations.ConclusionsThe proposed regularized multivariate linear mixed models are relevant for both GWAS and GS. We hope that they will facilitate agronomy-related research in plant biology and crop breeding endeavors.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.