Abstract
Disaggregation methods have been extensively used in multiple criteria decision making to infer preferential information from reference examples, using linear programming techniques. This paper proposes simple extensions of existing formulations, based on the concept of regularization which has been introduced within the context of the statistical learning theory. The properties of the resulting new formulations are analyzed for both ranking and classification problems and experimental results are presented demonstrating the improved performance of the proposed formulations over the ones traditionally used in preference disaggregation analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.