Abstract

Considering the inaccuracy of image registration, we propose a new regularization restoration algorithm to solve the ill-posed super-resolution (SR) problem. Registration error is used to obtain cross-channel error information caused by inaccurate image registration. The registration error is considered as the noise mean added into the within-channel observation noise which is known as Additive White Gaussian Noise (AWGN). Based on this consideration, two constraints are regulated pixel by pixel within the framework of Miller's regularization. Regularization parameters connect the two constraints to construct a cost function. The regularization parameters are estimated adaptively in each pixel in terms of the registration error and in each observation channel in terms of the AWGN. In the iterative implementation of the proposed algorithm, sub-sampling operation and sampling aliasing in the detector model are dealt with respectively to make the restored HR image approach the original one further. The transpose of the sub-sampling operation is implemented by nearest interpolation. Simulations show that the proposed regularization algorithm can restore HR images with much sharper edges and greater SNR improvement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.