Abstract

Fokker-Planck systems modeling chemotaxis, haptotaxis and angiogenesis are numerous and have been widely studied. Several results exist that concern the gain of L p integrability but methods for proving regularizing effects in L ∞ are still very few. Here, we consider a special example, related to the Keller-Segel system, which is both illuminating and singular by lack of diffusion on the second equation (the chemical concentration). We show the gain of L ∞ integrability (strong hypercontractivity) when the initial data belongs to the scale-invariant space. Our proof is based on De Giorgi's technique for parabolic equations. We present this technique in a formalism which might be easier that the usual iteration method. It uses an additional continuous parameter and makes the relation to kinetic formulations for hyperbolic conservation laws.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.