Abstract
Partial regularity of solutions to a class of $2m$-order quasilinear parabolic systems and full interior regularity for $2m$-order linear parabolic systems with non smooth in time principal matrices is proved in the paper. The coefficients are assumed to be bounded and measurable in the time variable and VMO-smooth in the space variables uniformly with respect to time. To prove the result, we apply the $(A(t),m)$-caloric approximation method, $m\geq 1$. It is both an extension of the $A(t)$-caloric approximation applied by the authors earlier to study regularity problem for systems of the second order with non-smooth coefficients and an extension of the $A$-polycaloric lemma proved by V. Bogelein in \cite{Bo} to systems of $2m$-order.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.