Abstract

We study topological cocycles of a class of non-isometric distal minimal homeomorphisms of multidimensional tori, introduced by Furstenberg in [5] as iterated skew product extensions by the torus, starting with an irrational rotation.We prove that there are no topological type ${III}_0$ cocycles of these homeomorphisms with values in an Abelian locally compact group.Moreover, under the assumption that the Abelian locally compact group has no non-trivial connected compact subgroup, we show that a topologically recurrent cocycle is always regular, i.e. it is topologically cohomologous to a cocycle with values only in the essential range.These properties are well-known for topological cocycles of minimal rotations on compact metric groups (cf. [6], [2], [9], and [10]), but the distal minimal homeomorphisms considered in this paper are far from the isometric behaviour of minimal rotations and do not admit rigidity times.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.