Abstract

Abstract We study regularity in the context of connective ring spectra and spectral stacks. Parallel to that, we construct a weight structure on the category of compact quasi-coherent sheaves on spectral quotient stacks of the form $X=[\operatorname{Spec} R/G]$ defined over a field, where R is a connective ${{\mathcal{E}}_\infty}$-k-algebra and G is a linearly reductive group acting on R. Under reasonable assumptions, we show that regularity of X is equivalent to regularity of R. We also show that if R is bounded, such a stack is discrete. This result can be interpreted in terms of weight structures and suggests a general phenomenon: for a symmetric monoidal stable $\infty$-category with a compatible bounded weight structure, the existence of an adjacent t-structure satisfying a strong boundedness condition should imply discreteness of the weight-heart. We also prove a gluing result for weight structures and adjacent t-structures, in the setting of a semi-orthogonal decomposition of stable $\infty$-categories.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.