Abstract

In this paper we investigate regularity of solutions to a free boundary problem modeling tumor growth in fluid-like tissues. The model equations include a quasi-stationary diffusion equation for the nutrient concentration, and a Stokes equation with a source representing the proliferation density of the tumor cells, subject to a boundary condition with stress tensor effected by surface tension. This problem is a fully nonlinear problem involving nonlocal terms. Based on the employment of the functional analytic method and the theory of maximal regularity, we prove that the free boundary of this problem is real analytic in temporal and spatial variables for initial data of less regularity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.