Abstract

AbstractThe solution of the three‐dimensional mixed boundary value problem for the Laplacian in a polyhedral domain has special singular forms at corners and edges. A ‘tensor‐product’ decomposition of those singular forms along the edges is derived. We present a strongly elliptic system of boundary integral equations which is equivalent to the mixed boundary value problem. Regularity results for the solution of this system of integral equations are given which allow us to analyse the influence of graded meshes on the rate of convergence of the corresponding boundary element Galerkin solutions. We show that it suffices to refine the mesh only towards the edges of the surfaces to regain the optimal rate of convergence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.