Abstract
We study properties of sets having the minimum length (one-dimensional Hausdorff measure) in the class of closed connected sets Σ ⊂ ℝ2 satisfying the inequality max yϵM dist (y, Σ) ≤ r for a given compact set M ⊂ ℝ2 and given r > 0. Such sets play the role of the shortest possible pipelines arriving at a distance at most r to every point of M where M is the set of customers of the pipeline. In this paper, it is announced that every maximum distance minimizer is a union of finitely many curves having one-sided tangent lines at every point. This shows that a maximum distance minimizer is isotopic to a finite Steiner tree even for a “bad” compact set M, which distinguishes it from a solution of the Steiner problem (an example of a Steiner tree with infinitely many branching points can be found in a paper by Paolini, Stepanov, and Teplitskaya). Moreover, the angle between these lines at each point of a maximum distance minimizer is at least 2π/3. Also, we classify the behavior of a minimizer Σ in a neighborhood of any point of Σ. In fact, all the results are proved for a more general class of local minimizers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.