Abstract

In this paper we show that every sufficiently large family of convex bodies in the plane has a large subfamily in convex position provided that the number of common tangents of each pair of bodies is bounded and every subfamily of size five is in convex position. (If each pair of bodies have at most two common tangents it is enough to assume that every triple is in convex position, and likewise, if each pair of bodies have at most four common tangents it is enough to assume that every quadruple is in convex position.) This confirms a conjecture of Pach and Toth, and generalizes a theorem of Bisztriczky and Fejes Toth. Our results on families of convex bodies are consequences of more general Ramsey-type results about the crossing patterns of systems of graphs of continuous functions $f:[0,1] \to \mathbb{R}$. On our way towards proving the Pach-Toth conjecture we obtain a combinatorial characterization of such systems of graphs in which all subsystems of equal size induce equivalent crossing patterns. These highly organized structures are what we call regular systems of paths and they are natural generalizations of the notions of cups and caps from the famous theorem of Erdos and Szekeres. The characterization of regular systems is combinatorial and introduces some auxiliary structures which may be of independent interest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.