Abstract

The regular subspaces of a Dirichlet form are the regular Dirichlet forms that inherit the original form but possess smaller domains. The two problems we are concerned are: (1) the existence of regular subspaces of a fixed Dirichlet form, (2) the characterization of the regular subspaces if exists. In this paper, we will first research the structure of regular subspaces for a fixed Dirichlet form. The main results indicate that the jumping and killing measures of each regular subspace are just equal to that of the original Dirichlet form. By using the independent coupling of Dirichlet forms and some celebrated probabilistic transformations, we will study the existence and characterization of the regular subspaces of local Dirichlet forms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.