Abstract

A regular left-order on a finitely generated group G is a total, left-multiplication invariant order on G whose corresponding positive cone is the image of a regular language over the generating set of the group under the evaluation map. We show that admitting regular left-orders is stable under extensions and wreath products and we give a classification of the groups whose left-orders are all regular left-orders. In addition, we prove that a solvable Baumslag–Solitar group B(1,n) admits a regular left-order if and only if n\geq -1 . Finally, Hermiller and Šunić showed that no free product admits a regular left-order. We show that if A and B are groups with regular left-orders, then (A*B)\times \mathbb{Z} admits a regular left-order.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.