Abstract

We develop the theory of regular cost functions over finite trees: aquantitative extension to the notion of regular languages of trees: Cost functions map each input (tree) to a value in~$\omega+1$, and are considered modulo an equivalence relation which forgets about specific values, but preserves boundedness of functions on all subsets of the domain. We introduce nondeterministic and alternating finite tree cost automata for describing cost functions. We show that all these forms of automata are effectively equivalent. We also provide decision procedures for them. Finally, following B\"uchi's seminal idea, we use cost automata for providing decision procedures for cost monadic logic, a quantitative extension of monadic second order logic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.