Abstract
We revisit in this Note the well known Bohr-Sommerfeld quantization rule (BS) for a 1-D Pseudo-differential self-adjoint Hamiltonian within the algebraic and microlocal framework of Helffer and Sjöstrand; BS holds precisely when the Gram matrix consisting of scalar products of some WKB solutions with respect to the " flux norm " is not invertible. Dans le cadre algébrique et microlocal élaboré par Helffer et Sjöstrand, on propose une ré-écriture de la règle de quantification de Bohr-Sommerfeld pour un opérateur auto-adjoint h-Pseudo-différentiel 1-D; elle s'exprime par la non-inversibilité de la matrice de Gram d'un couple de solutions WKB dans une base convenable, pour le produit scalaire associé à la " norme de flux " .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Revue Africaine de Recherche en Informatique et Mathématiques Appliquées
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.