Abstract
The regular and exact completions of categories with weak limits are proved to exist and to be determined by an appropriate universal property. Several examples are discussed, and in particular the class of examples given by categories monadic over a power of Set: any such a category is in fact the exact completion of the full subcategory of free algebras. Applications to Grothendieck toposes and geometric morphisms, and to epireflective hulls are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.