Abstract
Understanding mechanisms that contribute to the regression of glomerulosclerosis is important for developing new strategies to treat chronic kidney disease. We reported that transient high-dose treatment with an angiotensin receptor blocker causes regression of renal arteriolar hypertrophy and hypertension in spontaneously hypertensive rats. To extend those findings to another form of kidney disease, we examined the short- and long-term effects of transient high-dose angiotensin receptor blocker treatment in a mouse model of adriamycin-induced glomerulosclerosis. A 2-week course of candesartan caused a dose-dependent regression of established glomerulosclerotic lesions sustained for over 6 months following cessation of treatment. Highly sensitive in situ zymography and activity assays showed that glomerular matrix metalloproteinase (MMP)-2 activity was increased after high-dose angiotensin blocker therapy. Treatment of cultured podocytes with candesartan resulted in an increase in MMP-2 activity. The regression of glomerulosclerosis was partially attenuated in mice pretreated with the MMP inhibitor doxycycline, as well as in MMP-2 knockout mice. Our results suggest that transient high-dose angiotensin receptor blocker treatment effectively induced sustained regression of glomerulosclerosis by a mechanism mediated, in part, by changes in MMP-2 activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.