Abstract

This chapter evaluates regression models, focusing on the normal linear regression model. The normal linear regression model establishes a relationship between a quantitative response (also called outcome or dependent) variable, assumed to be normally distributed, and one or more explanatory (also called regression, predictor, or independent) variables about which no distributional assumptions are made. The model is usually referred to as 'the general linear model'. The chapter then differentiates between simple linear regression and multiple regression. The term 'simple linear regression' covers the regression model where there is one response variable and one explanatory variable, assuming a linear relationship between the two. The chapter also discusses the model formulae in R; generalized linear models; collinearity and aliasing; and logarithmic transformations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.