Abstract
Summary The probability plot correlation coefficient (PPCC) test has been known as a powerful but easy-to-use goodness-of-fit test. However, the application of PPCC test statistics is sometimes difficult since the test statistics are generally derived in tabulated form and the number of test statistics is significant. In this study, the PPCC test statistics for the normal, Gumbel, gamma, GEV, and Weibull distributions are derived, and regression equations of the PPCC test statistics for those models are formulated as a function of the significance levels, sample sizes, and skewness coefficients depending on the models. Monte Carlo simulation for power tests were performed to compare the rejection capability of the PPCC test with those of the χ2, Cramer von Mises, and Kolmogorov–Smirnov tests for several probability distributions. The power test results indicated that the PPCC and χ2-tests had better rejection performances than the CVM and K–S tests did when the parent and applied models were identical. Moreover, the PPCC test showed the most powerful rejection rate, followed by the χ2-test, while the CVM was the worst when the parent and applied models were different. In addition, the power of rejection increased with sample size when the parent and applied models were different. However, the rejection power did not vary appreciably with sample size when the parent and applied models were identical.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.