Abstract
Evaluating the importance of input (predictor) variables is of interest in many applications of statistical models. However, nonlinearity and correlation among variables make it difficult to measure variable importance accurately. In this work, a novel variable importance measure, called regression and independence based variable importance (RIVI), is proposed. RIVI is designed by integrating Gaussian process regression (GPR) and Hilbert-Schmidt independence criterion (HSIC) so that it is applicable to nonlinear systems. The results of two numerical examples demonstrate that RIVI is superior to several conventional measures including the Pearson correlation coefficient, PLS-β, PLS-VIP, Lasso, HSIC, and permutation importance with random forest in the variable identification accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.