Abstract

A novel distal radical rearrangement of alkoxyphosphine is developed for the first time and applied to the regioselective radical fluoroalkylphosphorylation of unactivated olefins. By employing a one-pot two-step reaction of (bis)homoallylic alcohols, organophosphine chlorides, and fluoroalkyl iodides under CFL (compact fluorescence light) irradiation, a series of fluoroalkylphosphorylated alkyl iodides and alcohols are easily synthesized by regiospecific installing a phosphonyl onto the inner carbon of terminal olefins and further iodination/hydroxylation. Mechanism studies reveal that the migration undergoes a distinctive radical cyclization/β-scission on the lone electron pair of phosphorus, resulting in C-P bond formation and C-O bond cleavage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.