Abstract

In this study, we investigated whether regional distribution of white matter (WM) lesions, normal-appearing [NA] WM microstructural abnormalities and gray matter (GM) atrophy may differently contribute to cognitive performance in multiple sclerosis (MS) patients according to sex. Using the same scanner, brain 3.0T MRI was acquired for 287 MS patients (females = 173; mean age = 42.1 [standard deviation, SD = 12.7] years; relapsing-remitting = 196, progressive = 91; median Expanded Disability Status Scale = 2.5 [interquartile range, IQR = 1.5-5.0]; median disease duration = 12.1 [IQR = 6.3-19.0] years; treatment: none = 70, first-line = 130, second-line = 87) and 172 healthy controls (HC) (females = 92; mean age = 39.3 [SD = 14.8] years). MS patients underwent also Rao's neuropsychological battery. Using voxel-wise analyses, we investigated in patients sex-related differences in the association of cognitive performances with WM lesions, NAWM fractional anisotropy (FA) and GM volumes (p < 0.01, family-wise error [FWE]). Sixty-six female (38%) and 48 male (42%) MS patients were cognitively impaired, with no significant between-group difference (p = 0.704). However, verbal memory performance was worse in males (p = 0.001), whereas verbal fluency performance was worse in females (p = 0.004). In both sexes, a higher T2-hyperintense lesion prevalence in cognitively-relevant WM tracts was significantly associated with worse cognitive performance (p ≤ 0.006), with stronger associations in females than males in global cognition (p ≤ 0.004). Compared to sex-matched HC, male and female MS patients had widespread lower NAWM FA and GM volume (p < 0.01). In both sexes, worse cognitive performance was associated with widespread reduced NAWM FA (p < 0.01), with stronger associations in females than males in global cognition and verbal memory (p ≤ 0.009). Worse cognitive performance was significantly associated with clusters of cortical GM atrophy in males (p ≤ 0.007) and mainly with deep GM atrophy in females (p ≤ 0.006). In this study, only limited differences in cognitive performances were found between male and female MS patients. A disconnection syndrome due to focal WM lesions and diffuse NAWM microstructural abnormalities seems to be more relevant in female MS patients to explain cognitive impairment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.