Abstract

BackgroundDevelopment of biofuels is considered as one of the important ways to replace conventional fossil energy and mitigate climate change. However, rapid increase of biofuel production could cause other environmental concerns in China such as water stress. This study is intended to evaluate the life-cycle water footprints (WF) of biofuels derived from several potential non-edible feedstocks including cassava, sweet sorghum, and Jatropha curcas in China. Different water footprint types including blue water, green water, and grey water are considered in this study. Based on the estimated WF, water deprivation impact and water stress degree on local water environment are further analyzed for different regions in China.ResultsOn the basis of the feedstock resource availability, sweet sorghum, cassava, and Jatropha curcas seeds are considered as the likely feedstocks for biofuel production in China. The water footprint results show that the feedstock growth is the most water footprint intensive process, while the biofuel conversion and transportation contribute little to total water footprints. Water footprints vary significantly by region with climate and soil variations. The life-cycle water footprints of cassava ethanol, sweet sorghum ethanol, and Jatropha curcas seeds biodiesel were estimated to be 73.9–222.2, 115.9–210.4, and 64.7–182.3 L of water per MJ of biofuel, respectively. Grey water footprint dominates the life-cycle water footprint for each type of the biofuels. Development of biofuels without careful water resource management will exert significant impacts on local water resources. The water resource impacts vary significantly among regions. For example, based on blue and grey water consumption, Gansu province in China will suffer much higher water stress than other regions do due to limited available water resources and large amount of fertilizer use in that province. In term of blue water, Shandong province is shown with the most severe water stress issue, followed by Gansu province, which is attributed to the limited water resources in both provinces.ConclusionsBy considering feedstock resource distribution, biofuel production potentials, and estimated water footprints, this study provides insight into the impact of biofuel production on the local water environment in China. Biofuel development policies need to be carefully designed for the sustainable development of biofuels in China.

Highlights

  • Development of biofuels is considered as one of the important ways to replace conventional fossil energy and mitigate climate change

  • It is obvious that the grey water accounts for the largest proportion of the total water footprints of biofuels

  • Conclusions and policy recommendations In this study, the biofuel production potential from different non-edible biomasses was estimated in China

Read more

Summary

Introduction

Development of biofuels is considered as one of the important ways to replace conventional fossil energy and mitigate climate change. Rapid increase of biofuel production could cause other environmental concerns in China such as water stress. This study is intended to evaluate the life-cycle water footprints (WF) of biofuels derived from several potential non-edible feedstocks including cassava, sweet sorghum, and Jatropha curcas in China. Biomass can be transformed into gaseous, liquid and solid bioenergy, as well as other chemical materials and products [5] Among these conversion technologies, liquid biofuels such as bioethanol and biodiesel are deemed as important substitutes for conventional petroleum fuels. First-generation biofuels are usually derived from edible feedstocks such as rice, wheat, sugar, and vegetable oils. Major issues of the second-generation biofuels include technology readiness, environmental sustainability, among other factors [7]. The largest amount of biofuels produced worldwide are mainly from corn, sugarcane, soybean, rapeseeds, and other food crops [9]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.