Abstract

Region scheduling, a technique applicable to both fine-grain and coarse-grain parallelism, uses a program representation that divides a program into regions consisting of source and intermediate level statements and permits the expression of both data and control dependencies. Guided by estimates of the parallelism present in regions, the region scheduler redistributes code, thus providing opportunities for parallelism in those regions containing insufficient parallelism compared to the capabilities of the executing architecture. The program representation and the transformations are applicable to both structured and unstructured programs, making region scheduling useful for a wide range of applications. The results of experiments conducted using the technique in the generation of code for a reconfigurable long instruction word architecture are presented. The advantages of region scheduling over trace scheduling are discussed. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.