Abstract
The dopamine (DA) terminal fields in the rat dorsal striatum (DS) and nucleus accumbens core (NAcc) are organized as patchworks of domains that exhibit distinct kinetics of DA release and clearance. The present study used fast-scan cyclic voltammetry recordings of electrically evoked DA overflow to test the hypothesis that nomifensine might exhibit domain-dependent actions within the NAcc, as we previously found to be the case within the DS. Within the NAcc, nomifensine preferentially enhanced evoked DA overflow in the slow domains compared with the fast domains. To seek a kinetic explanation for nomifensine's selective actions, we quantified the apparent KM of DA clearance by numerically evaluating the derivative of the descending phase of the DA signal after the end of the stimulus. For comparison, we likewise quantified the apparent KM in the domains of the DS. As expected, because it is a competitive inhibitor, nomifensine significantly increased the apparent KM in both the fast and slow domains of both the NAcc and DS. However, our analysis also led to the novel finding that nomifensine preferentially increases the apparent KM in the NAcc compared with the DS; the apparent KM increased by ~500% in the NAcc and by ~200% in the DS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.